Non-myogenic tumors display altered expression of dystrophin (DMD) and a high frequency of genetic alterations

نویسندگان

  • Leonela N. Luce
  • Mercedes Abbate
  • Javier Cotignola
  • Florencia Giliberto
چکیده

DMD gene mutations have been associated with the development of Dystrophinopathies. Interestingly, it has been recently reported that DMD is involved in the development and progression of myogenic tumors, assigning DMD a tumor suppressor activity in these types of cancer. However, there are only few reports that analyze DMD in non-myogenic tumors. Our study was designed to examine DMD expression and genetic alterations in non-myogenic tumors using public repositories. We also evaluated the overall survival of patients with and without DMD mutations. We studied 59 gene expression microarrays (GEO database) and RNAseq (cBioPortal) datasets that included 9817 human samples. We found reduced DMD expression in 15/27 (56%) pairwise comparisons performed (Fold-Change (FC) ≤ 0.70; p-value range = 0.04-1.5x10-20). The analysis of RNAseq studies revealed a median frequency of DMD genetic alterations of 3.4%, higher or similar to other well-known tumor suppressor genes. In addition, we observed significant poorer overall survival for patients with DMD mutations. The analyses of paired tumor/normal tissues showed that the majority of tumor specimens had lower DMD expression compared to their normal adjacent counterpart. Interestingly, statistical significant over-expression of DMD was found in 6/27 studies (FC ≥ 1.4; p-value range = 0.03-3.4x10-15). These results support that DMD expression and genetic alterations are frequent and relevant in non-myogenic tumors. The study and validation of DMD as a new player in tumor development and as a new prognostic factor for tumor progression and survival are warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DMD Locus Harbours Multiple Long Non-Coding RNAs Which Orchestrate and Control Transcription of Muscle Dystrophin mRNA Isoforms

The 2.2 Mb long dystrophin (DMD) gene, the largest gene in the human genome, corresponds to roughly 0.1% of the entire human DNA sequence. Mutations in this gene cause Duchenne muscular dystrophy and other milder X-linked, recessive dystrophinopathies. Using a custom-made tiling array, specifically designed for the DMD locus, we identified a variety of novel long non-coding RNAs (lncRNAs), both...

متن کامل

Interleukin-1beta (IL-1β)-induced Notch ligand Jagged1 suppresses mitogenic action of IL-1β on human dystrophic myogenic cells

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive muscle disorder caused by mutations in the dystrophin gene. Nonetheless, secondary processes involving perturbation of muscle regeneration probably exacerbate disease progression, resulting in the fatal loss of muscle in DMD patients. A dysfunction of undifferentiated myogenic cells is the most likely cause for the reduction of re...

متن کامل

The role of basal and myogenic factors in the transcriptional activation of utrophin promoter A: implications for therapeutic up-regulation in Duchenne muscular dystrophy.

Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. Utrophin is the autosomal homologue of dystrophin. We previously demonstrated that overexpression of utrophin in the muscles of dystrophin-null transgenic mice completely prevented the phenotype arising from dystrophin deficiency. Two independentl...

متن کامل

تشخیص مولکولی ناقلین بیماری دیستروفی عضلانی دوشن در خانواده‌های مشکوک، با استفاده از نشانگرهای ریزماهواره‌ای

Background and Objective: Duchenne Muscular Dystrophy(DMD) is a neuromuscular disorder with progressive muscle wasting and weakness. This disease is the consequence of mutations in dystrophin gene located on X chromosome. Inheritance pattern of the disease is gene-dependent recessive with an incidence of one in 3500 alive male newborns. Due to the absence of efficient treatment, detection of fe...

متن کامل

Repression-free utrophin-A 5’UTR variants

Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017